Part Number Hot Search : 
UV131 EDZ24B EN25Q64 OP603TX BTA40 T711033 SR020PT EN25Q64
Product Description
Full Text Search
 

To Download RFP30N06LE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SEMICONDUCTOR
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
30A, 60V, ESD Rated, Avalanche Rated, Logic Level N-Channel Enhancement-Mode Power MOSFETs
Packages
JEDEC TO-220AB
SOURCE DRAIN GATE
July 1995
Features
* 30A, 60V * rDS(ON) = 0.047 * 2kV ESD Protected * Temperature Compensating PSPICE Model * Peak Current vs Pulse Width Curve * UIS Rating Curve
DRAIN (FLANGE)
JEDEC TO-262AA
Description
The RFP30N06LE, RF1S30N06LE and RF1S30N06LESM are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits. These transistors incorporate ESD protection and are designed to withstand 2kV (Human Body Model) of ESD.
PACKAGE AVAILABILITY PART NUMBER RFP30N06LE RF1S30N06LE RF1S30N06LESM PACKAGE TO-220AB TO-262AA TO-263AB BRAND F30N06LE 1S30N06L 1S30N06L
G DRAIN (FLANGE)
A
SOURCE DRAIN GATE
JEDEC TO-263AB
M A
A
DRAIN (FLANGE) GATE SOURCE
Symbol
D
NOTE: When ordering use the entire part number. Add suffix, 9A, to obtain the TO-263 variant in tape and reel i.e. RF1S30N06LESM9A.
Formerly developmental type TA49027.
S
Absolute Maximum Ratings
TC = +25oC RFP30N06LE, RF1S30N06LE, RF1S30N06LESM UNITS V V V A
Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR Gate Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS Drain Current RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate above +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrostatic Discharge Rating, MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . ESD Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Copyright
60 60 +10, -8 30 Refer to Peak Current Curve Refer to UIS Curve 96 0.645 2 -55 to +175 260
W W/oC kV
oC oC
(c) Harris Corporation 1995 5-45
File Number
3629.1
Specifications RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Electrical Specifications
PARAMETER Drain-Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current TC = +25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS TEST CONDITIONS ID = 250A, VGS = 0V VGS = VDS, ID = 250A VDS = 60V, VGS = 0V VGS = +10, -8V ID = 30A, VGS = 5V VDD = 30V, ID = 30A, RL = 1, VGS = 5V, RGS = 2.5 TC = +25oC TC = +150oC MIN 60 1 VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDS = 25V, VGS = 0V, f = 1MHz VDD = 48V, ID = 30A, RL = 1.6 TYP 11 88 30 40 51 28 1.8 1350 290 85 MAX 2 1 50 10 0.047 140 100 62 34 2.6 1.55 80 UNITS V V A A A ns ns ns ns ns ns nC nC nC pF pF pF
oC/W oC/W
Gate-Source Leakage Current On Resistance Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 5V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient
IGSS rDS(ON) tON tD(ON) tR tD(OFF) tF tOFF QG(TOT) QG(5) QG(TH) CISS COSS CRSS RJC RJA
Source-Drain Diode Specifications
PARAMETER Forward Voltage Reverse Recovery Time SYMBOL VSD tRR TEST CONDITIONS ISD = 30A ISD = 30A, dISD/dt = 100A/s MIN TYP MAX 1.5 125 UNITS V ns
5-46
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves
TC = +25oC 10 DUTY CYCLE 0.5 0.2 0.1 0.05 0.02 0.01
200 100
ID , DRAIN CURRENT (A) ZJC , NORMALIZED THERMAL RESPONSE
1
100s
10
OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON)
1ms 10ms 100ms DC
PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC + TC 10-2 10-1 100 101
1
VDSS MAX = 60V
1
10 VDS , DRAIN-TO-SOURCE VOLTAGE (V)
100
SINGLE PULSE 0.01 10-5 10-4 10-3
t, RECTANGULAR PULSE DURATION (s)
FIGURE 1. SAFE OPERATING AREA CURVE
FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
40 IDM , PEAK CURRENT CAPABILITY (A) 500
TC = +25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - T c I = I ---------------------- 25 150
ID , DRAIN CURRENT (A)
30
VGS = 10V 100
20
10
VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 20 10-6 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101
0 25 50 75 100 125 (oC) 150 175 TC , CASE TEMPERATURE
FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE
FIGURE 4. PEAK CURRENT CAPABILITY
100
ID(ON) , ON STATE DRAIN CURRENT (A)
PULSE DURATION = 250s, TC = +25oC VGS = 10V
VDD = 15V 100 PULSE TEST PULSE DURATION = 250s DUTY CYCLE = 0.5% MAX -55oC +25oC +175oC
ID , DRAIN CURRENT (A)
80
VGS = 5V VGS = 4.5V
80
60 VGS = 4V 40 VGS = 3V 20
60
40
20
0
0
1.5 4.5 3.0 6.0 VDS , DRAIN-TO-SOURCE VOLTAGE (V)
7.5
0 0.0
1.5
6.0 3.0 4.5 VGS , GATE-TO-SOURCE VOLTAGE (V)
7.5
FIGURE 5. TYPICAL SATURATION CHARACTERISTICS
FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS
5-47
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves
3.0 2.5 rDS(ON) , NORMALIZED 2.0 1.5 1.0 0.5 0.0 -80 VGS(TH) , NORMALIZED GATE THRESHOLD VOLTAGE
(Continued)
VGS = VDS, ID = 250A 2.0
PULSE DURATION = 250s, VGS = 5V, ID = 30A
1.5
1.0
0.5
-40
0
40
80
120
160
200
0.0 -80
-40
TJ , JUNCTION TEMPERATURE (oC)
160 120 0 40 80 TJ , JUNCTION TEMPERATURE (oC)
200
FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE
FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs TEMPERATURE
1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0.0 0 25
BVDSS , NORMALIZED DRAIN-TO-SOURCE BREAKDOWN VOLTAGE
ID = 250A 2.0
1.5
1.0
0.5
0.0 -80
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
125 50 75 100 TC , CASE TEMPERATURE (oC)
150
175
FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN VOLTAGE vs TEMPERATURE
FIGURE 10. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE
VDS , DRAIN SOURCE VOLTAGE (V)
VDD = BVDSS 45
VDD = BVDSS 3.75
C, CAPACITANCE (pF)
1500
CISS
30 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS
2.50
1000
500
COSS CRSS
15
RL = 2.0 IG(REF) = 0.62mA VGS = 5V IG(REF) IG(ACT) t, TIME (s) IG(REF) IG(ACT)
1.25
0 0 0 10 15 20 5 VDS , DRAIN-TO-SOURCE VOLTAGE (V) 25 20 80
0.00
FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260
5-48
VGS , GATE SOURCE VOLTAGE (V)
2000
VGS = 0V, f = 1MHz
60
5.00
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves
100 IAS , AVALANCHE CURRENT (A) STARTING TJ = +25oC STARTING TJ = +150oC
(Continued)
10
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.01 0.1 1 10 tAV , TIME IN AVALANCHE (ms)
FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING
Test Circuits and Waveforms
VDS tP L IAS VARY tP TO OBTAIN REQUIRED PEAK IAS VGS RG +
BVDSS VDS VDD
VDD
0V
tP
DUT IL 0.01 tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDD RL VDS VDS VGS
tON tD(ON) tR 90%
tOFF tD(OFF) tF 90%
10%
10% 90%
0V
RGS VGS 50% PULSE WIDTH
50%
DUT
10%
FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT
FIGURE 17. RESISTIVE SWITCHING WAVEFORMS
5-49
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Temperature Compensated PSPICE Model for the RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
SUBCKT RFP30N06LE 2 1 3; CA 12 8 1 3.34e-9 CB 15 14 3.44e-9 CIN 6 8 0 1.343e-9 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 75.39 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1
GATE ESG +
rev 6/2/93
DPLCAP 10 RSCL2
5
DRAIN 2 LDRAIN RSCL1 + 51 DBREAK 11 EBREAK + 17 18 DBODY
6 8 VTO + 16
5 51
ESCL 50 RDRAIN
-
1 EVTO 20 + 18 9 8 LGATE RGATE DESD1 91 DESD2 6
21 MOS1
MOS2
IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 7.22e-9 LSOURCE 3 7 6.31e-9 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 11.86e-3 RGATE 9 20 2.52 RIN 6 8 1e9 RSCL1 5 51 RSLVCMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 26.6e-3 RVTO 18 19 RVTOMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.5
RIN
CIN 8 RSOURCE 7 LSOURCE 3 SOURCE
S1A 12 S1B CA EGS 13 8 14 13
S2A 15 S2B 13 + 6 8 EDS CB + 5 8 14 IT RBREAK 17 18 RVTO 19 VBAT +
-
-
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/89,7)) .MODEL DBDMOD D (IS = 3.80e-13 RS = 1.12e-2 TRS1 = 1.61e-3 TRS2 = 6.08e-6 CJO = 1.05e-9 TT = 3.84e-8) .MODEL DBKMOD D (RS = 1.82e-1 TRS1 = 7.50e-3 TRS2 = -4.0e-5) .MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0) .MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 0.591e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.94 KP = 139.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 1.07e-3 TC2 = -3.03e-7) .MODEL RDSMOD RES (TC1 = 5.38e-3 TC2 = 1.64e-5) .MODEL RSLVCMOD RES (TC1 = 1.75e-3 TC2 = 3.90e-6) .MODEL RVTOMOD RES (TC1 = -2.15e-3 TC2 = -5.43e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF = -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF = -4.05) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.2 VOFF = 2.8) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.8 VOFF = -2.2) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records 1991.
5-50


▲Up To Search▲   

 
Price & Availability of RFP30N06LE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X